Carnegie Mellon Univ

Data base
Systems

Modern SQL

15-445/645 SPRING 2025)) PROF. JIGNESH PATEL

£CMU-DB

15-445/645 (Spring 2025)

TODAY’S AGENDA

Database Systems Background
Relational Model

Relational Algebra
Alternative Data Models
Q&A Session

LAST CLASS

We introduced the Relational Model as the superior
data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and
modify a relational database.

£CMU-DB

15-445/645 (Spring 2025)

SQL HISTORY

In 1971, IBM created its first relational query
language called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM

System R prototype DBMS.
— Structured English Query Language

IBM releases commercial SQL-based DBMSs:
— System/38 (1979), SQL/DS (1981), and DB2 (1983).

£CMU-DB

15-445/645 (Spring 2025)

https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R
https://en.wikipedia.org/wiki/IBM_System_R

£CMU-DB

15-445/645 (Spring 2025)

SQL HISTORY

ANSI Standard in 1986. ISO in 1987
— Structured Query Language

Current standard is SQL:2023

— SQL:2023 — Property Graph Queries, Muti-Dim. Arrays
— SQL:2016 — JSON, Polymorphic tables

— SQL:2011 - Temporal DBs, Pipelined DML

— SQL:2008 — Truncation, Fancy Sorting

— SQL:2003 - XML, Windows, Sequences, Auto-Gen IDs.
— SQL:1999 — Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

https://db.cs.cmu.edu/files/sql/sql1992.txt

SQL HISTORY

1987

@ Jo Kristian Bergum
t legacy databases in this

tor databases will replace mos
eled by natural language interfaces and deep

words:

| Tensor and vec
| decade. A disruption fu
. neural representations. In other

Dy Mutl"Dlm. Arrays

| Natural query languages (NQL) replace the |structured query language

| (sQu.
| 177.2K
Nng

330

The minimum I
. angua es
say that it supports S(§L iSy ggi-e;;%tem needs to

£2CMU-DB

15-445/645 (Spring 2025)

https://db.cs.cmu.edu/files/sql/sql1992.txt

SQL HISTORY

o7

@ Jo Kristian Bergum
Gagan Biyani m °

ector databases will replace most legaf
eled by natural language int S

In other words:

Tensor and v
- decade. A disruption fu

| neural representations.
} Natural query languages (NQL) repla
(SQL).
177.2K Vi
ThlS V'
Ideo demoes the o
utput.

330 Likes Bookmar!
| &

The minimum la
| 247 Ret

say that it suppor ¥

£2CMU-DB

https://db.cs.cmu.edu/files/sql/sql1992.txt

FLORE DIGITAL LIBRARY 1ggg STANDARDS MORE SITES SIGN IN JOIN IEEE Q|EEE

NEWS

The Rise of SQL >It’s become the

second programming language everyone
needs to know

BY RINA DIANE CABALLAR | 23 Aug 2022 | 3 MIN READ (W]

SHARE THIS STORY

a
Tensor and vector d

i tion SQL dominated the jobs ranking in IEEE Spectrum’s interactive rankings of the top
decade. A disrup

tatio ¥ f in programming languages this year. Normally, the top position is occupied by Python
neura\ Vepresen or other mainstays, such as C, C++, Java, and JavaScript, but the sheer number of
Tacs times employers sajd they wanted developers with SQL skills, albeit in additionto a [efeYpp} pany’s dat aand
Ul [—, LANGUAGES more general-purpose language, boosted it to No. 1. *h b
uery lang ‘hatbot for the gt
Natural g " aand

(SQL) So what’s behind SQL's soar to the top? The ever-increasing use of databases, for

R one. SQL has become the primary query language for accessing and managing data
5 AM - Apr 21 stored in such databases—speciﬁcally relational databases, which represent data in
table form with rows and columns. Databases serve as the foundation of many
enterprise applications and are increasingly found in other places as well, for
example taking the place of traditional file Systems in smartphones,

“This ubiquity means that every software developer will have to interact with
databases no matter the field, and SQL is the de facto standard for interacting with
databases,”

(t

=CMU-DB

[§
I\

https://db.cs.cmu.edu/files/sql/sql1992.txt

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:

— View definition
— Integrity & Referential Constraints
— Transactions

Important: SQL is based on bags (duplicates) not
sets (no duplicates).

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

TODAY'S AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Window Functions

Nested Queries

Lateral Joins

Common Table Expressions

student(sid,name, login, gpa)

EXAMPLE DATABASE

enrolled(sid,cid, grade)

sid cid grade
53666 15-445 C
53688 15-721 A
53688 15-826 B
53655 15-445 B
53666 15-721 C

sid name login age gpa

53666 | RZA rza@cs 55 (4.0

53688 | Taylor swift@cs 27 3.9

53655 | Tupac shakur@cs 25 |3.5
course(cid, name)

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases

£CMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Functions that return a single value from a bag of

tuples:

— AVG(col)— Return the average col value.
— MIN(col)— Return minimum col value.
— MAX(col)— Return maximum col value.
— SUM(col)— Return sum of values in col.
— COUNT(col)— Return # of values for col.

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt

Eaa LR TV W | Eaoce=__ oo

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(logln) AS cnt

e NIET TV B Eaoce=__ oo

SELECT COUNT(*) AS cnt

Eaoa PRSI ET TV L= loio

SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(logln) AS cnt

Eaoa TET TV | Eice=__ ol

SELECT COUNT(*) AS cnt

=aoa PR TR T 1V 0 L= oo

SELECT COUNT(1) AS cnt

[ST VN MIET TV I | Eace=__ ol

SELECT COUNT(1+1+1) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2025)

MULTIPLE AGGREGATES

Get the number of students and their average GPA that
have a ‘@cs” login.

AVG(gpa) COUNT(sid)

SELECT AVG(gpa), COUNT(sid) 3.8 3
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

AVG(s.gpa) e.cid

SELECT AVG(s.gpa), e.cid 3.86 222

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.
SELECT AVG(s.gpa),

AVG(s.gpa) e.cid
e d 3.86 ?7?
FROM enrolled AS@J student AS s

ON e.sid = s.sid

$ZCMU-DB

15-445/645 (Spring 2025)

AGGREGATES

Output of other columns outside of an aggregate is

undefined.

Get the average GPA of students enrolled in each course.

AVG(s.gpa)

SELECT AVG(s.gpa),

e d
FROM enrolled ASX% student AS s

ON e.sid = s.sid

SELECT AVG(s.gpa), ANY_VALUE(e.cid)

AVG(s.gpa)

FROM enrolled AS e JOIN student AS s

ON e.sid = s.sid

$ZCMU-DB

15-445/645 (Spring 2025)

GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid

e.sid s.sid s.gpa e.cid
53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445

$ZCMU-DB

15-445/645 (Spring 2025)

GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid

e.sid s.sid s.gpa e.cid
53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445

$ZCMU-DB

15-445/645 (Spring 2025)

GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 | 2.25 |15-721
53439 53439 2.70 15-721 2.46 15-721

56023 56023 | 2.75 |15-826 # 3 39 15-826

59439 59439 | 3.90 |15-826 1.89 |15-445

53961 53961 | 3.50 |15-826

58345 58345 | 1.89 |15-445

$ZCMU-DB

15-445/645 (Spring 2025)

$ZCMU-DB

15-445/645 (Spring 2025)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

$ZCMU-DB

15-445/645 (Spring 2025)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid,
FROM enrolled AS e, stude W S

WHERE e.sid = s.sid

GROUP BY e.cid

$ZCMU-DB

15-445/645 (Spring 2025)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

GROUP BY e.cid, s.name

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9
GROUP BY e.cid

$ZCMU-DB

15-445/645 (Spring 2025)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid

FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

AND avg_gpa > 3.9

GROUP BY e.cid

$ZCMU-DB

15-445/645 (Spring 2025)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid

FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

AND avg_gpa > 3.9

GROUP BY e.cid

$ZCMU-DB

15-445/645 (Spring 2025)

X

$ZCMU-DB

15-445/645 (Spring 2025)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9;

$ZCMU-DB

15-445/645 (Spring 2025)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9; x

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING AVG(s.gpa) > 3.9;

$ZCMU-DB

15-445/645 (Spring 2025)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING AVG(s.gpa) > 3.9;

AVG(s.gpa) e.cid

3.75

15-415

3.950000

15-721

3.900000

15-826

$ZCMU-DB

15-445/645 (Spring 2025)

avg_gpa e.cid
3.950000 | 15-721

STRING OPERATIONS

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
MSSQL Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('TuPaC') SQL-92

WHERE name = "TuPaC"

MySQL

$ZCMU-DB

15-445/645 (Spring 2025)

STRING OPERATIONS

LIKE is used for string matching.
String-matching operators

— '%' Matches any substring (including
empty strings).

— ' _" Match any one character

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM enrolled AS e
WHERE e.cid LIKE '15-%'

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_'

STRING OPERATIONS

SQL-92 defines string functions.
— Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'

$ZCMU-DB

15-445/645 (Spring 2025)

STRING OPERATIONS

SQL standard defines the | | operator for
concatenating two or more strings together.

SELECT name FROM student SQL-92
WHERE login = LOWER(name) || '@cs'

SELECT name FROM student MSSQL
WHERE login = LOWER(name) + '@Qcs'

SELECT name FROM student MySQL
WHERE login = CONCAT(LOWER(name), '@cs')

$ZCMU-DB

15-445/645 (Spring 2025)

DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.
Support/syntax varies wildly...

Demo: Get the # of days since the beginning of
the year.

£CMU-DB

15-445/645 (Spring 2025)

OUTPUT REDIRECTION

Store query results in another table:
— Table must not already be defined.

— Table will have the same # of columns with the same types
as the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM enrolled;

[SELECT DISTINCT cid __ Postgres
INTO TEMPORARY Courselds
FROM enrolled;

CREATE TABLE Courselds (MysSQL
SELECT DISTINCT cid FROM enrolled);

$ZCMU-DB

15-445/645 (Spring 2025)

OUTPUT REDIRECTION

Insert tuples from query into another table:

— Inner SELECT must generate the same columns as the
target table.

— DBMSs have different options/syntax on what to do with
integrity violations (e.g., invalid duplicates).

INSERT INTO Courselds SQL-92
(SELECT DISTINCT cid FROM enrolled);

$ZCMU-DB

15-445/645 (Spring 2025)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of

their columns.

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

$ZCMU-DB

15-445/645 (Spring 2025)

53123 A
53334 A
53650 B
53666 D

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled
WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'

ORDER BY 2

$ZCMU-DB

15-445/645 (Spring 2025)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled
WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'

ORDER BY 2

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

$ZCMU-DB

15-445/645 (Spring 2025)

OUTPUT CONTROL

ORDER BY <column#*> [ASC|DESC]
— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled

WHSELECT sid, grade FROM enrolled
OF WHERE cid = '15-721"'

ORDER BY 2
SELECT sid FROM enrolled %_
WHERE cid = '15-721" 53650
ORDER BY grade DESC, sid ASC 53123

53334

$ZCMU-DB

15-445/645 (Spring 2025)

OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'
FETCH FIRST 10 ROWS ONLY;

$ZCMU-DB

15-445/645 (Spring 2025)

OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'
FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'

ORDER BY gpa

OFFSET 10 ROWS

FETCH FIRST 10 ROWS WITH TIES;

$ZCMU-DB

15-445/645 (Spring 2025)

OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'
FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'

ORDER BY gpa

OFFSET 10 ROWS

FETCH FIRST 10 ROWSIWITH TIES;

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition

—> for each record, creates window => compute an answer for each window.

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition

—> for each record, creates window => compute an answer for each window.

rd n

Table

Record 1
Record 2
Record 3

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Table

Record 1
Record 2
Record 3

Record n

Partition 2 Partition k

Record
Record
Record

Partition 1

Record 1
Record 2
Record 3

Record
Record
Record

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Recordn

Table

Record 1
Record 2
Record 3

Partition k

Partition 1 Partition 2

(Sort } >

Record 1
Record 2
Record 3

Record
Record
Record
Record
Record
Record

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Recordn

Table

Record 1
Record 2
Record 3

Partition k

Partition 1 Partition 2

l (Sort } >

Record 1
Record 2
Record 3

Record
Record
Record
Record
Record
Record

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Recordn

Table

Record 1
Record 2
Record 3

Partition k

Partition 1 Partition 2

l (Sort } >

Record 1
Record 2
Record 3

Record
Record
Record
Record
Record
Record

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Recordn

Table

Record 1
Record 2
Record 3

Partition k

Partition 1 Partition 2

! (Sort } >

Record 1
Record 2
Record 3

Record
Record
Record
Record
Record
Record

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Recordn

Table

Record 1
Record 2
Record 3

Partition k

Partition 1 Partition 2

l (Sort } >

Record 1
Record 2
Record 3

Record
Record
Record
Record
Record
Record

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Recordn

Table

Record 1
Record 2
Record 3

Partition k

Partition 1 Partition 2

(Sort } >

Record 1
Record 2
Record 3

Record
Record
Record
Record
Record
Record

Current |«

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition

—> for each record, creates window => compute an answer for each window.

Recordn

Table

Record 1
Record 2
Record 3

Partition k

Partition 1 Partition 2

(Sort } >

Record
Record
Record
Record
Record
Record
Record 1
Record 2
Record 3

Current |«

_
Window

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition
—> for each record, creates window => compute an answer for each window.

Table

Recordn

Record 1
Record 2
Record 3

£ 1= $=] =l Ay Ay M
slsls Partition 1 | |l8l¢| Partition 2 elsls Partition k
4 (a4 a7 24 [=4 =% é é é
_ I _
Sort Sort '. Sort ', >

Current |«

U Output an aggregate value computed

Window =» ds in the wind
S2CMU-DB over records in the window.

15-445/645 (Spring 2025)

L&
WINDOW FUNCTIONS

Conceptual execution: (optional) Partition data = (optional) sort each partition

—> for each record, creates window => compute an answer for each window.

—Nen [=}
= ElE =
Table
4 (a4 a7 ~
£ 1= $=] =l Ay Ay M
Eg Eg Eg Partition 1 &93 &93 &93 Partition 2 HEE Partition k
[24 [« [a7
aruvan BN e
Sort Sort L Sort J >
— N on =}
il Result Table E

£CMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing
them into a single output tuple, to support running

totals, ranks, and moving averages.
— Like an aggregation but tuples are not grouped into a
single output tuples.

SELECT FUNC-NAME(...) OVER (...)
FROM tableName

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing
them into a single output tuple, to support running

totals, ranks, and moving averages.
— Like an aggregation but tuples are not grouped into a
single output tuples.
How to “slice” up data
Can also sort tuples

SELECT FUNC-NAME(...) OVER (...)
FROM tableNdke

Aggregation Functions

2 CMU-DB Special Functions

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Aggregation functions:
— Anything that we discussed earlier

Special window functions:

— ROW_NUMBER()— # of the current row

— RANK()— Order position of the current
TOW.

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Aggregation functions:
— Anything that we discussed earlier

Special window functions:

— ROW_NUMBER()— # of the current row
— RANK()— Order position of the current
TOW.

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

FROM enrolled

SELECT *, ROW_NUMBER() OVER () AS row_num

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function. 15-445 | 53666

Use PARTITION BY to specify group. 15-721 153688

cid sid row_number
1

15-445 53655 2
1

15-721 53666 2

15-826 53688 1

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

cid sid row_number
15-445 |53666 |1
15-445 | 53655 |2
15-721 |53688 |1
15-721 |53666 |2
15-826 | 53688 |1

SELECT cid, sid,

FROM enrolled
ORDER BY cid

ROW_NUMBER() OVER (PARTITION BY cid)

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2

$ZCMU-DB

15-445/645 (Spring 2025)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS_rank

FROM enrolled) ﬁz—égﬂkigg__———?
WHERE |ranking. rank

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.
— Inner queries can appear (almost) anywhere in query.

Outer Query ELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled) Inner Query

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.
— Inner queries can appear (almost) anywhere in query.

Outer Query ELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled) Inner Query

SELECT sid,
(SELECT name FROM student AS s
WHERE s.sid = e.sid) AS name
FROM enrolled AS e;

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.
— Inner queries can appear (almost) anywhere in query.

Outer Query ELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled) Inner Query

SELECT sid,
(SELECT name FROM student AS s
WHERE s.sid = e.sid) AS name
FROM enrolled AS e;

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...

T

sid in the set of people that take 15-445

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Get the names of students in '15-445

SELECT name‘nl;wystudent
WHERE| sid (
SELECT|sid |*RéMenrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

ALL— Must satisty expression for all rows in the
sub-query.

ANY— Must satisfy expression for at least one row in
the sub-query.

IN— Equivalent to '=ANY()'.

EXISTS— At least one row is returned without
comparing it to an attribute in outer query.

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Find student record with the highest id that is enrolled in

at least one course.

SELECT MAX(e.sid), s.name

FROM enrolled AS e, student AS s

WHERE e.sid = s.sid;

$ZCMU-DB

15-445/645 (Spring 2025)

X

This won't work in SQL-92. It runs in SQLite, but
not Postgres or MySQL (v8 with strict mode).

NESTED QUERIES

Find student record with the highest id that is enrolled in
at least one course.

SELECT sid, name FROM student
WHERE ...

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Find student record with the highest id that is enrolled in
at least one course.

SELECT sid, name FROM student
WHERE ...

"Is the highest enrolled sid"

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Find student record with the highest id that is enrolled in
at least one course.

SELECT sid, name FROM student
WHERE sid =
SELECT MAX(sid) FROM enrolled

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Find student record with the highest id that is enrolled in
at least one course.

SELECT sid, name FROM student m
WHERE sid = 53688 |Bieber

SELECT MAX(sid) FROM enrolled

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE

“with no tuples in the enrolled table”

cid name

15-445 Database Systems

15-721 Advanced Database Systems
15-826 Data Mining

15-799 Special Topics in Databases

$ZCMU-DB

15-445/645 (Spring 2025)

sid cid grade
53666 |15-445 C
53688 |15-721 A
53688 |15-826 B
53655 |15-445 B
53666 |15-721 C

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(

tuples in the enrolled table

)

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

‘15—799 ‘Special Topics in Databases \

$ZCMU-DB

15-445/645 (Spring 2025)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTA(
SELECT * FROJl enrolled
WHERE |course.cid|= enrolled.cid

‘15—799 ‘Special Topics in Databases \

$ZCMU-DB

15-445/645 (Spring 2025)

LATERAL JOINS

The LATERAL operator allows a nested query to
reference attributes in other nested queries that
precede it.

— You can think of it like a for loop that allows you to
invoke another query for each tuple in a table.

SELECT * FROM ‘ 1 ‘2 ‘

(SELECT 1 AS x) AS t1,
LATERAL (SELECT t1.x+1 AS y) AS t2;

$ZCMU-DB

15-445/645 (Spring 2025)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,
For each course:
» Compute the # of enrolled students

For each course:
» Compute the average gpa of enrolled students

$ZCMU-DB

15-445/645 (Spring 2025)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,

LATERAL (SELECT COUNT(*) AS cnt FROM egrolled

WHERE enrolled.cid =
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s

C.Cl S t1,

JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;

$ZCMU-DB

15-445/645 (Spring 2025)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c
LATERAL (SELECT COUNT(*) AS cnt FROM e
WHERE enrolled.cid = _m
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;

$ZCMU-DB

15-445/645 (Spring 2025)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,

LATERAL (SELECT COUNT(*) AS cnt FROM egrolled

WHERE enrolled.cid =
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s

C.Cl S t1,

JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;

$ZCMU-DB

15-445/645 (Spring 2025)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM course AS c,

LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1

LATERAL (SELECT AVG(gpa) AS avg FROM student AS|s

JOIN enrolled AS e ON s.sid

e.sid

WHERE e.cid = c.cid) AS t2;

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(F) AS cnt FROM enrolled
WHERE enrollpd.cid = c.cid) AS t1,

LATERAL (SELECT AVG(gpa) A$§ avg FROM student AS s

JOIN enrolled A§ e ON s.sid = e.sid
WHERE e.cid = id} AS t2;

$ZCMU-DB

15-445/645 (Spring 2025)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

cid name cnt avg

15-445 |Database Systems 2 3.75

15-721 [Advanced Database Systems 2 3.95

SELECT * FROM course AS C, [75.326 |pata Mining] 39
LATERAL (SELECT COUNT() {15-799 |Special Topics in Databases |@ null

WHERE enrollpd.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) A$§ avg FROM student AS s
JOIN enrolled A§ e ON s.sid = e.sid
WHERE e.cid =] AS t2;

$ZCMU-DB

15-445/645 (Spring 2025)

COMMON TABLE EXPRESSIONS

Specify a temporary result set that can then be
referenced by another part of that query.

— Think of it like a temp table just for one query.
Alternative to nested queries, views, and explicit
temp tables.

WITH cteName AS (
SELECT 1
)

SELECT * FROM cteName

$ZCMU-DB

15-445/645 (Spring 2025)

COMMON TABLE EXPRESSIONS

Specify a temporary result set that can then be
referenced by another part of that query.

— Think of it like a temp table just for one query.
Alternative to nested queries, views, and explicit
temp tables.

WITH |[cteName |AS (
SELECT 1
)

SELECT * FROM|cteName

$ZCMU-DB

15-445/645 (Spring 2025)

100

COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names before
the AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (Postgres
SELECT 1, 2

)
SELECT * FROM cteName

$ZCMU-DB

15-445/645 (Spring 2025)

101

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in
at least one course.

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

)
SELECT name FROM student,|cteSource

WHERE student.sid = cteSource.maxId

$ZCMU-DB

15-445/645 (Spring 2025)

OTHER THINGS TO NOTE

Identifiers (e.g. table and column

names) are case-insensitive.
— Makes it harder for applications that care
about case (e.g., use CamelCased names).

One often sees quotes around names:
— SELECT "ArtistList.firstName"

You have to pay cash money to get the
standard documents.

$ZCMU-DB

15-445/645 (Spring 2025)

102

Standards Sectors About us News Taking part Store

ISO/IEC 9075-2:2023

Information technology

Database languages SQL
Part 2: Foundation (SQL/Foundation)

| Status : Published

General information

Status : Published
Publication date : 2023-06
Stage : International Standard published [60.60]

Edition : 6
Number of pages : 1715

Technical Committee : ISO/IEC JTC 1/SC 32
ICS : 35.060

Search Q

Format Language

CHF216

cccccccc

== & Read sample
=mmae Preview this
Online Browsing
_ Plateform (OBP)

103

CONCLUSION

SQL is a hot language. N Top Programming Languages 2023
B9 LOtS Of NLZSQL tOOlS, but ertlng Click a button to see a differently weighted ranking
SQL iS nOt gOing away' Spectrum Trending
You should (almost) always strive o —
to compute your answer as a e
single SQL statement.
ct
c
HTML
Shell
SAS
TypeScript
=CMU-DB

15-445/645 (Spring 2025)

104

HOMEWORK #1

Write SQL queries to perform basic data analysis.
— Write the queries locally using SQLite + DuckDB.

— Submit them to Gradescope

— You can submit multiple times and use your best score.

Due: Wednesday Jan. 29" @ 11:59pm

https://15445.courses.cs.cmu.edu/spring2025/homeworkl

£CMU-DB

15-445/645 (Spring 2025)

https://15445.courses.cs.cmu.edu/spring2025/homework1

105

NEXT CLASS

We will begin our journey to understanding the
internals of database systems starting with Storage!

£CMU-DB

15-445/645 (Spring 2025)

